谭保才, 院长
电 话:0531-88363592 传 真:0531-8856-5610 E-Mail:bctan@sdu.edu.cn
教育背景
起止时间 学位 毕业院校 专业学科
1992/09-1997/06 博士 佛罗里达大学(美国) 植物分子遗传学
1984/09-1987/06 硕士 兰州大学 植物生理学
1980/09-1984/06 学士 兰州大学 植物生理学
工作经历
2013/12- 至 今 山东大学生命科学学院 特聘教授,院长,泰山学者
2011/01-2013/12 香港中文大学深圳研究院 研究员
2007/12-2013/12 香港中文大学植物分子与农业技术研究所 研究副教授
2001/03-2007/12 佛罗里达大学癌症与遗传研究所 研究助理教授
1997/07-2001/02 佛罗里达大学植物分子与细胞生物学 博士后
1992/08-1997/06 佛罗里达大学园艺科学系 研究助理
1987/06-1992/08 兰州大学生物系 讲师
科研方向
1.种子发育的遗传调控机制
种子发育直接影响粮食作物的产量,因此解析种子发育的分子遗传调控机制,既是植物分子遗传学的一个根本问题,也是农业生产高产育种的重要基础。种子发育过程涉及多个复杂的遗传调控网络,突变体是解析遗传网络组成元件的主要遗传材料。我们利用Mutator转座子分离了大量的玉米种子发育突变体,也开发了针对性的快速基因克隆方法。该研究方向通过对突变体的遗传学、分子生物学和细胞生物学分析,克隆关键性基因、查明其分子功能、解析其调控种子发育的机制和调控网络,为分子育种提供理论基础。
2.类胡萝卜素的合成与代谢
维生素A是人类健康必需的营养元素,缺乏维生素A,轻则造成免疫力下降,重则造成夜盲、失明和发育受阻、甚至死亡。遗憾的是人体不能自主合成维生素A,必需靠食物摄取。植物中维生素A原(proVitamin A)是维生素A的前体,可在小肠中转化为维生素A,维生素A原属于类胡萝卜素类物质。因此,本研究旨在研究类胡萝卜素的合成与代谢机制,为高维生素A原的谷物创建奠定基础。
3.ABA合成的调控机制
植物激素ABA在种子休眠和环境应答中起关键作用,胁迫条件下植物可迅速合成ABA,调节一系列基因表达应对环境变化。但从植物感知胁迫到如何启动ABA合成的机制还不清楚。在胁迫条件下,ABA合成的关键基因NCED/Vp14的表达迅速升高。因此,本研究旨在通过对NCED/Vp14的分子生物学研究,探索ABA合成的上游调控基因和通路。
(招收以上各研究方向的硕士、博士研究生和博士后研究人员)
主持课题
1. 2018-2019 玉米籽粒大小主要遗传网络的解析和分子机制研究,国家自然科学基金重大研究计划集成项目(主持)。
2. 2017-2021 玉米种子发育关键PPR基因的功能和作用机理研究,国家自然科学基金重点项目(主持)。
3. 2015-2017 玉米籽粒形成关键基因的克隆和生物学功能分析,国家自然科学基金重大研究计划重点项目(主持)。
4. 2014-2016 Functional analysis of SMALL KERNEL 11 and identification of its interacting proteins, Hong Kong Research Grants Council (主持)。
5. 2013-2015 Functional analysis of Empty pericarp 5 in maize seed development, Hong Kong Research Grants Council (主持)。
6. 2012-2015 玉米小籽粒基因Smk2的克隆和功能分析,国家自然科学基金面上项目(主持)。
7. 2012-2014 Functional analysis of EMB15 in maize seed development, Hong Kong Research Grants Council (主持).
8. 2012-2016 Applied research of plant molecular biotechnology on modern agriculture, Shenzhen Peacock Scheme (共同主持)。
9. 2011-2013 Functional analysis of SMK2 in maize, CUHK Shenzhen Research Institute Start-up Support Scheme (主持)。
10. 2010-2012 Genetic and functional dissection of Emb12 and Emb14 in maize embryo development, Hong Kong Research Grants Council (主持).
代表性研究成果
*Corresponding author (通讯作者)
1. Sun, F., Zhang, X., Shen, Y., Wang, H., Liu, R., Wang, X., Gao, D., Yang, Y.Z., Liu, Y., Tan, B.C.* (2018). EMPTY PERICARP8 is required for the mitochondrial nad1 intron4 and nad4 intron 1 splicing, complex I biogenesis and seed development in maize. Plant Journal 95: 919-932.
2. Li, X.L., Huang, W.L., Jiang R.C., Sun, F., Wang, H.C., Zhao, J., Xu, C., Tan, B.C.* (2018). EMP18 functions in mitochondrial atp6 and cox2 transcript editing and is essential to seed development in maize. New Phytologist 219 (doi: 10.1111/nph.15425).
3. Zhang Y.F., Suzuki M., Sun F., Tan B.C.* (2017). The mitochondrion-targeted PENTATRICOPEPTIDE REPEAT78 protein is required for nad5 mature mRNA stability and seed development in maize. Molecular Plant 10: 1321-1333.
4. Yang Y.Z., Ding S., Wang Y., Li C.L., Shen Y., Meeley R., McCarty D.R., Tan B.C.* (2017). Small kernel2 encodes a glutaminase in Vitamin B6biosynthesis and is essential for maize seed development. Plant Physiology 174: 1127-1138.
5. Cai M., Li S., Sun F., Sun Q., Zhao H., Ren X., Zhao Y., Tan B.C., Zhang Z.*, Qiu F.* (2017). Emp10 encodes a mitochondrial PPR protein that affects the cis-splicing of nad2 intron 1 and seed development in maize. Plant Journal 91: 132-144.
6. Tan B.C., Guan J.C., Ding S., Wu S., Koch K.E., McCarty D.R.* (2017). Structure and origin of the White Cap locus and its role in the evolution of grain color in maize. Genetics 206: 135-150. (Commentary by Thomas Peterson (2017). Transposon Storm Kicks off a White Cap. Genetics 206: 87-89.)
7. Yang Y.Z., Ding S., Wang H.C., Sun F., Huang W.L., Song S., Xu C.H., Tan B.C.* (2017). The pentatricopeptide repeat protein EMP9 is required for mitochondrial ccmB and rps4 transcript editing, mitochondrial complex biogenesis and seed development in maize. New Phytologist 214: 782-795.
8. Xiu Z., Sun F., Shen Y., Zhang X., Jiang R., Bonnard G., Zhang J., Tan B.C.* (2016). EMPTY PERICARP16 is required for mitochondrial nad2 intron 4 cis-splicing and seed development in maize. Plant Journal 85: 507-519.
9. Li C., Shen Y., Meeley R., McCarty D.R., Tan, B.C.* (2015). Embryo defective 14 encodes a plastid-targeted cGTPase essential for embryogenesis in maize. Plant Journal 84: 785-799.
10. Sun F., Wang X., Bonnard G., Shen Y., Xiu Z., Li, X., Gao, D., Zhang, Z., Tan B.C.* (2015). Empty pericarp 7 encodes a mitochondrial E-subgroup pentatricopeptide repeat protein that is required for ccmFN editing, mitochondrial function and seed development in maize. Plant Journal 84: 283-295.
11. Chen Y., Tan B.C.* (2015). New insight in the Gibberellin biosynthesis and signal transduction. Plant Signaling & Behavior 10:5, e1000140.
12. Chen Y., Hou M., Liu L., Wu S., Shen Y., Ishiyama K., Kobayashi M., McCarty D.R., Tan B.C.* (2014). The maize DWARF 1 encodes a Gibberellin 3-oxidase and is dual-localized to the nucleus and cytosol. Plant Physiology 166: 2028-2039.
13. Li X.J., Zhang Y.F., Hou M.M., Sun F., Shen Y., Xiu Z.H., Wang X.M., Chen Z.L., Sun S.S.M., Small I., Tan B.C.* (2014). Small kernel 1 encodes a pentatricopeptide repeat protein required for mitochondrial nad7 transcript editing and seed development in maize and rice. Plant Journal 79: 797–809.
14. Yang Y.Z., Tan B.C.* (2014). A distal ABA responsive element in AtNCED3 promoter is required for positive feedback regulation of ABA biosynthesis in Arabidopsis. PLoS One 9: e87283.
15. Zhang Y.F., Hou M.M., Tan B.C.* (2013). The requirement of WHIRLY1 for embryogenesis is dependent on genetic background in maize. PLoS One 8: e67369.
16. Shen Y., Li C., Meeley R., McCarty D.R., Tan B.C.* (2013). Embryo defective 12 encodes translation initiation factor 3 and is essential to maize embryogenesis. Plant Journal 74: 792-804.
17. Liu Y., Xiu Z.H., Meeley R., Tan B.C.* (2013). Empty pericarp 5 encodes a pentatricopeptide repeat protein that is required for mitochondrial RNA editing and seed development in maize. Plant Cell 25: 868-883.
18. Tan B.C.*, Chen Z., Shen Y., Zhang Y., Lai J., Sun S.S.M. (2011). Identification of an active new Mutator transposable element in maize. Genes Genome Genetics 1: 293-302.
19. Messing S.A., Gabelli S.B., Echeverria I., Vogel J.T., Guan J.C., Tan B.C., Klee H.J., McCarty D.R., Amzel L.M. (2010). Structural insights into maize Viviparous14, a key enzyme in the biosynthesis of the phytohormone abscisic acid. Plant Cell 22: 2970-2980.
20. Vogel J.T., Tan B.C., McCarty D.R., Klee H.J. (2008). The carotenoid cleavage dioxygenase 1 enzyme has broad substrate specificity, cleaving multiple carotenoids at two different bond positions. J. Biol. Chem. 283: 11364-1137.
21. Settles A.M. Holding D.R., Tan B.C., et al., (2007). Sequence-indexed mutations in maize using the Uniform Mu transposon-tagging population. BMC Genomics 8: 116-124.
22. McCarty D.R., Settles A.M., Suzuki M., Tan B.C., Latshaw S., Porch T., Robin K., Baier J., Avigne W., Lai J., Messing J., Koch K.E., Hannah L.C. (2005) Steady-state transposon mutagenesis in inbred maize. Plant Journal 44: 52-61.
23. Tan B.C.*, Joseph L.M., Deng W.T., Liu L.J., Li Q.B., Cline K., McCarty D.R. (2003). Molecular characterization of the Arabidopsis nine-cis-expoxycarotenoid dioxygenase gene family. Plant Journal 35: 44-56.
24. Tan B.C.*, Cline K., McCarty D.R. (2001). Localization and targeting of VP14 epoxy-carotenoid dioxygenase to the chloroplast membrane. Plant Journal 27: 373-382.
25. Tan B.C., Schwartz S., Zeevaart J.A., McCarty D.R.* (1997). Genetic control of abscisic acid synthesis in maize. Proc. Natl. Acad. Sci. USA 94: 12235-12240.
26. Schwartz S.*, Tan B.C.*, (*Co-first author), Gage D.A., Zeevaart J.A., McCarty D.R.* (1997). Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276: 1872-1875.
奖励
1. Award of Excellence in Graduate Research, University of Florida, 1998 (佛罗里达大学优秀博士毕业论文奖)